

#### Grid Integration -Applications and Implementation Activities





#### **Brian Parsons**

FY 2005 DOE Wind Program Implementation Meeting
November 16 -18, 2004
Omni Interlocken Hotel
Broomfield, Colorado





- Growing membership and recognition as *The* focal group for information
- Establishment of 4 "User Groups"
  - Operating Impact and Integration Studies
  - Distributed Wind Applications
  - Wind Plant Modeling and Interconnection
  - Market Operation and Transmission Policy Best Practices
- Foundational "Wind Integration & Interconnection Workshop" cosponsored with AWEA, CIGRE, NREL/DOE, Albuquerque, May
- Additional technical meetings 10-03 Seattle, 10-04 Albany



#### UWIG – Other work

- Participant in many operational impact studies and reviews (Xcel, MN DPS, NY ISO)
- Suggested as repository of turbine and wind farm models by AWEA
- Participation in FERC proceedings and workshops
- Planned Short Course on the Integration and Interconnection of Wind Power Plants into Electric Power Systems Feb 14-16, Palm Springs





#### NWCC – Transmission Analysis and Outreach



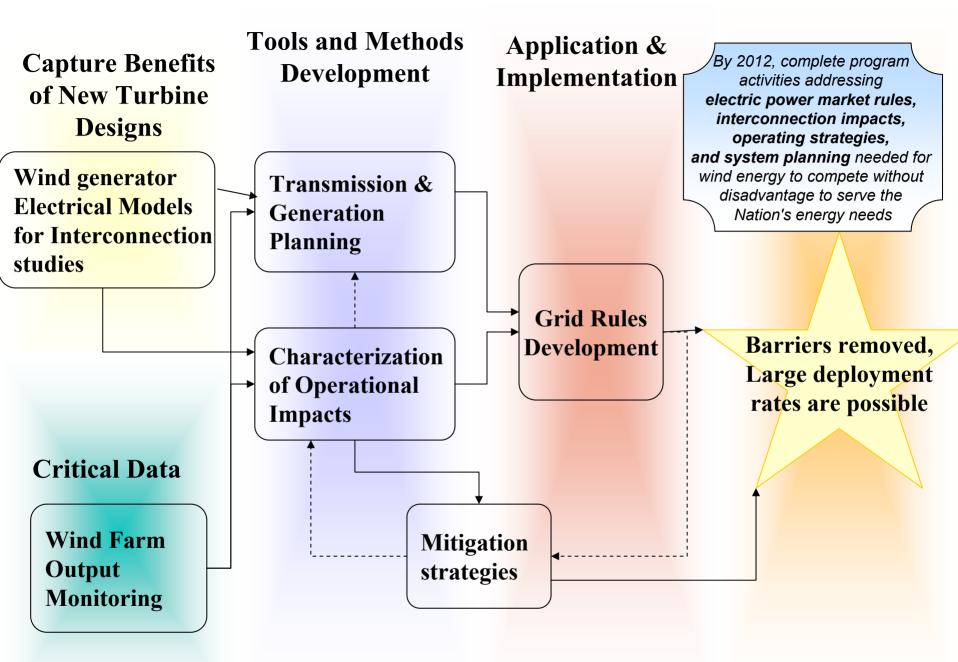
- Case Studies
- RTO Briefings
- RTO Principles
- Comments on FERC RTO & SMD NOPRs
- Transmission Issue Briefs
- Transmission Planning Workshops
  - Midwestern
  - Western
  - Southwestern Power Pool
- Transmission Planning Principles



#### Transmission Case Studies 🐫



#### Purpose


- Inform members on complex issues affecting wind power expansion
- Provide information and insights useful to others dealing with same issues
- Completed 4 case studies on Transmission Policy and Pricing in Texas, Virtual Wheeling, Transmission Planning in the Upper Midwest, and Wind in the CAISO
- Starting 4 new case studies on transmission for wind in TX, WI, CO, and CA



### NWCC Transmission Work Group Impact



- Provides communication and education in both directions for hundreds of people
- RTO principles influenced market evolution and FERC SMD
- Transmission planning principles can influence the transmission planning process
- Midwest workshop led to MISO MTEP Wind Scenario with 10,000 MW of wind
- NWCC provides the focus and forum to actively engage on an ongoing basis, compared with previous approach of contested case proceedings



System Integration Relationships



### Operational Impacts Work Highlights



- Technical Review Committee for MN DPS study of 15% wind
- Methods input for NY ISO study by GE
- Comments and technical assistance for WAPA Loveland regulation tariff proposal
- Regulation and load following analysis for CA RPS integration studies
- Wind/hydro case studies with Arizona Power Authority and Missouri River underway



#### What we know

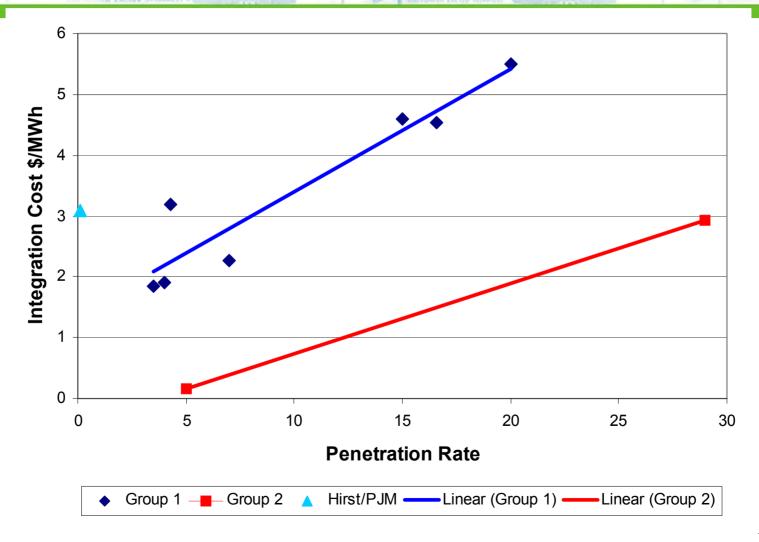


#### • Drivers include

- Size of control area
- Geographic dispersion of wind
- Conventional generation characteristics
- Operational practices
- Key: system balance, not individual balance
- Costs appear moderate, with day ahead scheduling and forecasting being the largest impact



## What Else Would We Like to Know




- Shape of the A/S cost curve (high penetration level)
- Sensitivity of results to
  - market structure and pricing
  - generation mix and fuel cost
  - transmission congestion
- More insights and a few "rules of thumb"
- Better understanding of the impact of wind forecasting
- What new operational practices would help with wind integration?
- Specific operator response to extreme events (operational simulator)



# Wind Integration Cost Studies



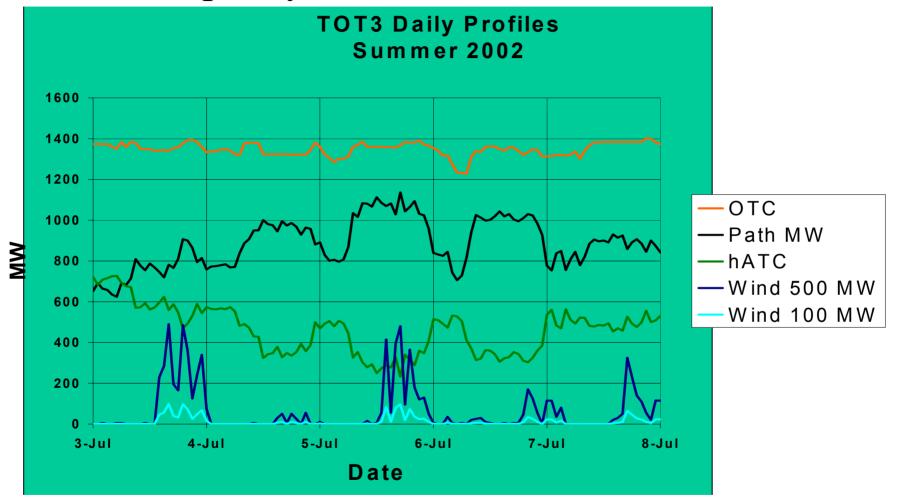




#### Operational Impacts Planned work



- Methods Development and Technical Review
   Committee for higher penetration studies by Xcel
- Areva operational simulator analysis: Methods and case studies (SMUD, others?)
- Methods development using GE MARS (incorporates transmission as well)
- Continue interaction with WAPA Loveland
- Increased international technical exchange (Ireland, Thomas Ackerman, IEA)
- Complete Wind/hydro case studies




## Transmission and Generation Planning Work Highlights



- ELCC analysis for CA RPS integration studies
- Technical interaction with Southwest Power Pool generation working group
- Rocky Mountain Area Transmission Study wind development scenario and long-term, non-firm transmission concept analysis
- Completed congressional report on "Comprehensive assessment of wind resources and transmission issues in the Dakotas"

### Comparison of Available Transmission Line Capacity and Wind Power Profiles



This concept and case study is expected to be highlighted at Dec. 1 FERC conference on Assessing the State of Wind Energy In Wholesale Electricity Markets in Denver



### Transmission and Generation Planning: New Work



- Further capacity credit methods work with GE MARS, Xcel
- Geographic diversity power profile modeling task initiation
- Methods and technical review role in WAPA Dakotas study
- Participate in transmission planning exercises in Northwest and Southwest (Western Governors initiative tie), update for Upper Midwest
- Continue developing alternative transmission product ideas with grid stakeholders (WAPA, Pacificorp, BPA)



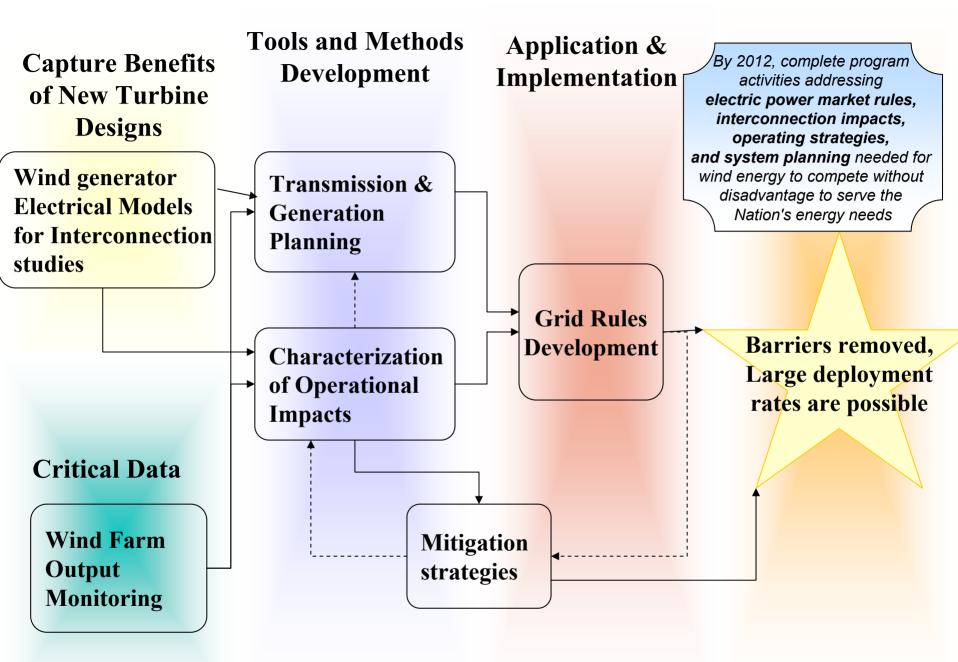
# Milestones from Current MYTP



#### **Systems Integration**

| 2003                                            | 2004  | 2005        | 2006 | 2007 | 2008 | 2009 | 2010+ |
|-------------------------------------------------|-------|-------------|------|------|------|------|-------|
|                                                 |       |             |      |      |      |      |       |
|                                                 | 2     |             |      |      |      |      |       |
| Technology Characterization and Data Collection |       |             |      |      |      |      |       |
|                                                 |       |             |      |      | •    | •    |       |
|                                                 | 1 3 6 | >           |      |      |      | •    |       |
| Tools and Methods Development                   |       |             |      |      |      |      |       |
|                                                 |       |             |      |      |      |      |       |
|                                                 | 4 5   | <b>⟨</b> 7⟩ | 8    | 9    |      | •    |       |
| Application and Implementation                  |       |             |      |      |      |      |       |
|                                                 |       |             |      |      |      |      |       |
|                                                 |       |             |      |      |      | •    |       |
|                                                 |       |             |      |      |      | -    |       |
|                                                 |       |             |      |      |      | •    |       |
|                                                 |       |             |      |      | •    |      |       |

#### **Milestones**


- Facilitate development of transmission scenarios for two regions through NWCC planning forums
- 2. Complete one year of wind farm data collection for 3 RTOs or utilities
- 3. Complete dynamic models of wind farms and clusters for grid-level and distribution-level influences harmonics, machine dynamics, flicker, reactive power
- 4. Updated version of Hybrid2 software
- Draft reports on hydro integration analyses for two river basins
- 6. Publish methods for treating wind in grid scheduling framework
- 7. Promote development of consensus utility transmission planning principles
- 8. Complete high penetration study, with validation, for one RTO
- $9. \ \ Complete \ mitigation \ study \ for \ RTO \ studied \ in \ 2006$



### Additional Prospective Milestones



- Tools and Methods Development
  - Facilitate and publish comprehensive summaries of wind's impacts on electric-system operation and ancillary-services costs(2006, 2008, 2010)
- Technology Characterization and Data Collection
  - Facilitate availability of efficient wind-plant electrical models for representative wind generation hardware(2006, 2008, 2010)
- Application and Implementation
  - Complete primer for utilities on expected operational impacts of wind power (2005)
  - Complete three case studies of wind forecasting value (2006)
  - Complete comparative evaluation of capacity accreditation methods (2007)
  - Complete evaluation and recommendations for high-wind penetration scenarios based on production of electricity and hydrogen (2009)
  - Complete recommendations for long-range power system planning that optimizes the realization of wind power's overall benefits from a comprehensive IRP perspective (2012)
  - Complete periodic reviews by SI Expert Group (2005, 2007, 2009, 2011)



System Integration Relationships